Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Critical care explorations ; 4(12), 2022.
Article in English | EuropePMC | ID: covidwho-2156635

ABSTRACT

OBJECTIVES: Proliferation of COVID-19 research underscored the need for improved awareness among investigators, research staff and bedside clinicians of the operational details of clinical studies. The objective was to describe the genesis, goals, participation, procedures, and outcomes of two research operations committees in an academic ICU during the COVID-19 pandemic. DESIGN: Two-phase, single-center multistudy cohort. SETTING: University-affiliated ICU in Hamilton, ON, Canada. PATIENTS: Adult patients in the ICU, medical stepdown unit, or COVID-19 ward. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: An interprofessional COVID Collaborative was convened at the pandemic onset within our department, to proactively coordinate studies, help navigate multiple authentic consent encounters by different research staff, and determine which studies would be suitable for coenrollment. From March 2020 to May 2021, five non-COVID trials continued, two were paused then restarted, and five were launched. Over 15 months, 161 patients were involved in 215 trial enrollments, 110 (51.1%) of which were into a COVID treatment trial. The overall informed consent rate (proportion agreed of those eligible and approached including a priori and deferred consent models) was 83% (215/259). The informed consent rate was lower for COVID-19 trials (110/142, 77.5%) than other trials (105/117, 89.7%;p = 0.01). Patients with COVID-19 were significantly more likely to be coenrolled in two or more studies (29/77, 37.7%) compared with other patients (13/84, 15.5%;p = 0.002). Review items for each new study were collated, refined, and evolved into a modifiable checklist template to set up each study for success. The COVID Collaborative expanded to a more formal Department of Critical Care Research Operations Committee in June 2021, supporting sustainable research operations during and beyond the pandemic. CONCLUSIONS: Structured coordination and increased communication about research operations among diverse research stakeholders cultivated a sense of shared purpose and enhanced the integrity of clinical research operations.

2.
CMAJ Open ; 10(3): E807-E817, 2022.
Article in English | MEDLINE | ID: covidwho-2090865

ABSTRACT

BACKGROUND: The role of remdesivir in the treatment of hospitalized patients with COVID-19 remains ill-defined. We conducted a cost-effectiveness analysis alongside the Canadian Treatments for COVID-19 (CATCO) open-label, randomized clinical trial evaluating remdesivir. METHODS: Patients with COVID-19 in Canadian hospitals from Aug. 14, 2020, to Apr. 1, 2021, were randomly assigned to receive remdesivir plus usual care versus usual care alone. Taking a public health care payer's perspective, we collected in-hospital outcomes and health care resource utilization alongside estimated unit costs in 2020 Canadian dollars over a time horizon from randomization to hospital discharge or death. Data from 1281 adults admitted to 52 hospitals in 6 Canadian provinces were analyzed. RESULTS: The total mean cost per patient was $37 918 (standard deviation [SD] $42 413; 95% confidence interval [CI] $34 617 to $41 220) for patients randomly assigned to the remdesivir group and $38 026 (SD $46 021; 95% CI $34 480 to $41 573) for patients receiving usual care (incremental cost -$108 [95% CI -$4953 to $4737], p > 0.9). The difference in proportions of in-hospital deaths between remdesivir and usual care groups was -3.9% (18.7% v. 22.6%, 95% CI -8.3% to 1.0%, p = 0.09). The difference in proportions of incident invasive mechanical ventilation events between groups was -7.0% (8.0% v. 15.0%, 95% CI -10.6% to -3.4%, p = 0.006), whereas the difference in proportions of total mechanical ventilation events between groups was -5.7% (16.4% v. 22.1%, 95% CI -10.0% to -1.4%, p = 0.01). Remdesivir was the dominant intervention (but only marginally less costly, with mildly lower mortality) with an incalculable incremental cost effectiveness ratio; we report results of incremental costs and incremental effects separately. For willingness-to-pay thresholds of $0, $20 000, $50 000 and $100 000 per death averted, a strategy using remdesivir was cost-effective in 60%, 67%, 74% and 79% of simulations, respectively. The remdesivir costs were the fifth highest cost driver, offset by shorter lengths of stay and less mechanical ventilation. INTERPRETATION: From a health care payer perspective, treating patients hospitalized with COVID-19 with remdesivir and usual care appears to be preferrable to treating with usual care alone, albeit with marginal incremental cost and small clinical effects. The added cost of remdesivir was offset by shorter lengths of stay in the intensive care unit and less need for ventilation. STUDY REGISTRATION: ClinicalTrials. gov, no. NCT04330690.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Adult , Alanine/analogs & derivatives , Canada , Cost-Benefit Analysis , Humans
3.
J Crit Care ; 71: 154094, 2022 10.
Article in English | MEDLINE | ID: covidwho-2015602

ABSTRACT

PURPOSE: To categorize, quantify and interpret findings documented in feedback letters of monitoring or auditing visits for an investigator-initiated, peer-review funded multicenter randomized trial testing probiotics for critically ill patients. MATERIALS & METHODS: In 37 Canadian centers, monitoring and auditing visits were performed by 3 trained individuals; findings were reported in feedback letters. At trial termination, we performed duplicate content analysis on letters, categorizing observations first into unique findings, followed by 10 pre-determined trial quality management domains. We further classified each observation into a) missing operational records, b) errors in process, and potential threats to c) data integrity, d) patient privacy or e) safety. RESULTS: Across 37 monitoring or auditing visits, 75 unique findings were categorized into 10 domains. Most frequently, observations were in domains of training documentation (180/566 [32%]) and the informed consent process (133/566 [23%]). Most observations were missing operational records (438/566 [77%]) rather than errors in process (128/566 [23%]). Of 75 findings, 13 (62/566 observations [11%]) posed a potential threat to data integrity, 1 (1/566 observation [0.18%]) to patient privacy, and 9 (49/566 observations [8.7%]) to patient safety. CONCLUSIONS: Monitoring and auditing findings predominantly concerned missing documentation with minimal threats to data integrity, patient privacy or safety. TRIAL REGISTRATION: PROSPECT (Probiotics: Prevention of Severe Pneumonia and Endotracheal Colonization Trial): NCT02462590.


Subject(s)
Informed Consent , Patient Safety , Canada , Humans , Multicenter Studies as Topic
4.
Trials ; 23(1): 735, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2009448

ABSTRACT

RATIONALE: The COVID-19 pandemic disrupted non-COVID critical care trials globally as intensive care units (ICUs) prioritized patient care and COVID-specific research. The international randomized controlled trial CYCLE (Critical Care Cycling to Improve Lower Extremity Strength) was forced to halt recruitment at all sites in March 2020, creating immediate challenges. We applied the CONSERVE (CONSORT and SPIRIT Extension for RCTs Revised in Extenuating Circumstance) statement as a framework to report the impact of the pandemic on CYCLE and describe our mitigation approaches. METHODS: On March 23, 2020, the CYCLE Methods Centre distributed a standardized email to determine the number of patients still in-hospital and those requiring imminent 90-day endpoint assessments. We assessed protocol fidelity by documenting attempts to provide the in-hospital randomized intervention (cycling or routine physiotherapy) and collect the primary outcome (physical function 3-days post-ICU discharge) and 90-day outcomes. We advised sites to prioritize data for the study's primary outcome. We sought feedback on pandemic barriers related to trial procedures. RESULTS: Our main Methods Centre mitigation strategies included identifying patients at risk for protocol deviations, communicating early and frequently with sites, developing standardized internal tools focused on high-risk points in the protocol for monitoring patient progress, data entry, and validation, and providing guidance to conduct some research activities remotely. For study sites, our strategies included determining how institutional pandemic research policies applied to CYCLE, communicating with the Methods Centre about capacity to continue any part of the research, and developing contingency plans to ensure the protocol was delivered as intended. From 15 active sites (12 Canada, 2 US, 1 Australia), 5 patients were still receiving the study intervention in ICUs, 6 required primary outcomes, and 17 required 90-day assessments. With these mitigation strategies, we attempted 100% of ICU interventions, 83% of primary outcomes, and 100% of 90-day assessments per our protocol. CONCLUSIONS: We retained all enrolled patients with minimal missing data using several time-sensitive strategies. Although CONSERVE recommends reporting only major modifications incurred by extenuating circumstances, we suggest that it also provides a helpful framework for reporting mitigation strategies with the goal of improving research transparency and trial management. TRIAL REGISTRATION: NCT03471247. Registered on March 20, 2018.


Subject(s)
COVID-19 , Pandemics , Critical Illness/rehabilitation , Humans , Intensive Care Units , SARS-CoV-2 , Treatment Outcome
5.
JAMA ; 327(21): 2104-2113, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1898487

ABSTRACT

Importance: The efficacy and safety of prone positioning is unclear in nonintubated patients with acute hypoxemia and COVID-19. Objective: To evaluate the efficacy and adverse events of prone positioning in nonintubated adult patients with acute hypoxemia and COVID-19. Design, Setting, and Participants: Pragmatic, unblinded randomized clinical trial conducted at 21 hospitals in Canada, Kuwait, Saudi Arabia, and the US. Eligible adult patients with COVID-19 were not intubated and required oxygen (≥40%) or noninvasive ventilation. A total of 400 patients were enrolled between May 19, 2020, and May 18, 2021, and final follow-up was completed in July 2021. Intervention: Patients were randomized to awake prone positioning (n = 205) or usual care without prone positioning (control; n = 195). Main Outcomes and Measures: The primary outcome was endotracheal intubation within 30 days of randomization. The secondary outcomes included mortality at 60 days, days free from invasive mechanical ventilation or noninvasive ventilation at 30 days, days free from the intensive care unit or hospital at 60 days, adverse events, and serious adverse events. Results: Among the 400 patients who were randomized (mean age, 57.6 years [SD, 12.83 years]; 117 [29.3%] were women), all (100%) completed the trial. In the first 4 days after randomization, the median duration of prone positioning was 4.8 h/d (IQR, 1.8 to 8.0 h/d) in the awake prone positioning group vs 0 h/d (IQR, 0 to 0 h/d) in the control group. By day 30, 70 of 205 patients (34.1%) in the prone positioning group were intubated vs 79 of 195 patients (40.5%) in the control group (hazard ratio, 0.81 [95% CI, 0.59 to 1.12], P = .20; absolute difference, -6.37% [95% CI, -15.83% to 3.10%]). Prone positioning did not significantly reduce mortality at 60 days (hazard ratio, 0.93 [95% CI, 0.62 to 1.40], P = .54; absolute difference, -1.15% [95% CI, -9.40% to 7.10%]) and had no significant effect on days free from invasive mechanical ventilation or noninvasive ventilation at 30 days or on days free from the intensive care unit or hospital at 60 days. There were no serious adverse events in either group. In the awake prone positioning group, 21 patients (10%) experienced adverse events and the most frequently reported were musculoskeletal pain or discomfort from prone positioning (13 of 205 patients [6.34%]) and desaturation (2 of 205 patients [0.98%]). There were no reported adverse events in the control group. Conclusions and Relevance: In patients with acute hypoxemic respiratory failure from COVID-19, prone positioning, compared with usual care without prone positioning, did not significantly reduce endotracheal intubation at 30 days. However, the effect size for the primary study outcome was imprecise and does not exclude a clinically important benefit. Trial Registration: ClinicalTrials.gov Identifier: NCT04350723.


Subject(s)
COVID-19 , Intubation, Intratracheal , Prone Position , Respiratory Insufficiency , Wakefulness , Adult , Aged , COVID-19/complications , COVID-19/therapy , Female , Humans , Hypoxia/etiology , Hypoxia/therapy , Intubation, Intratracheal/methods , Male , Middle Aged , Respiration, Artificial/methods , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
6.
PLoS One ; 17(4): e0266770, 2022.
Article in English | MEDLINE | ID: covidwho-1817484

ABSTRACT

Only a small proportion of COVID-19 patients in Canada have been recruited into clinical research studies. One reason is that few community intensive care units (ICUs) in Canada participate in research. The objective of this study was to examine the motivating factors, barriers and facilitators to research participation amongst Canadian community ICU stakeholders. A cross-sectional online survey was distributed between May and November 2020. The survey focused on 6 domains: participant demographics, ICU characteristics, ICU research infrastructure, motivating factors, perceived barriers, and perceived facilitators. Responses were received from 73 community ICU stakeholders, representing 18 ICUs. 7/18 ICUs had a clinical research program. Participants rated their interest in pandemic research at a mean of 5.2 (Standard Deviation [SD] = 1.9) on a 7-point Likert scale from 'not interested' to 'very interested'. The strongest motivating factor for research participation was the belief that research improves clinical care and outcomes. The most significant facilitators of research involvement were the availability of an experienced research coordinator and dedicated external funding to cover start-up costs, while the most significant barriers to research involvement were a lack of start-up funding for a research coordinator and a lack of ICU research experience. Canadian Community ICU stakeholders are interested in participating in pandemic research but lack basic infrastructure, research personnel, research experience and start-up funding. Evolution of a research support model at community hospitals, where most patients receive acute care, may increase research participation and improve the generalizability of funded research in Canada.


Subject(s)
COVID-19 , COVID-19/epidemiology , Canada/epidemiology , Cross-Sectional Studies , Humans , Intensive Care Units , Surveys and Questionnaires
7.
CMAJ ; 194(7): E242-E251, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1714791

ABSTRACT

BACKGROUND: The role of remdesivir in the treatment of patients in hospital with COVID-19 remains ill defined in a global context. The World Health Organization Solidarity randomized controlled trial (RCT) evaluated remdesivir in patients across many countries, with Canada enrolling patients using an expanded data collection format in the Canadian Treatments for COVID-19 (CATCO) trial. We report on the Canadian findings, with additional demographics, characteristics and clinical outcomes, to explore the potential for differential effects across different health care systems. METHODS: We performed an open-label, pragmatic RCT in Canadian hospitals, in conjunction with the Solidarity trial. We randomized patients to 10 days of remdesivir (200 mg intravenously [IV] on day 0, followed by 100 mg IV daily), plus standard care, or standard care alone. The primary outcome was in-hospital mortality. Secondary outcomes included changes in clinical severity, oxygen- and ventilator-free days (at 28 d), incidence of new oxygen or mechanical ventilation use, duration of hospital stay, and adverse event rates. We performed a priori subgroup analyses according to duration of symptoms before enrolment, age, sex and severity of symptoms on presentation. RESULTS: Across 52 Canadian hospitals, we randomized 1282 patients between Aug. 14, 2020, and Apr. 1, 2021, to remdesivir (n = 634) or standard of care (n = 648). Of these, 15 withdrew consent or were still in hospital, for a total sample of 1267 patients. Among patients assigned to receive remdesivir, in-hospital mortality was 18.7%, compared with 22.6% in the standard-of-care arm (relative risk [RR] 0.83 (95% confidence interval [CI] 0.67 to 1.03), and 60-day mortality was 24.8% and 28.2%, respectively (95% CI 0.72 to 1.07). For patients not mechanically ventilated at baseline, the need for mechanical ventilation was 8.0% in those assigned remdesivir, and 15.0% in those receiving standard of care (RR 0.53, 95% CI 0.38 to 0.75). Mean oxygen-free and ventilator-free days at day 28 were 15.9 (± standard deviation [SD] 10.5) and 21.4 (± SD 11.3) in those receiving remdesivir and 14.2 (± SD 11) and 19.5 (± SD 12.3) in those receiving standard of care (p = 0.006 and 0.007, respectively). There was no difference in safety events of new dialysis, change in creatinine, or new hepatic dysfunction between the 2 groups. INTERPRETATION: Remdesivir, when compared with standard of care, has a modest but significant effect on outcomes important to patients and health systems, such as the need for mechanical ventilation. Trial registration: ClinicalTrials.gov, no. NCT04330690.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Hospital Mortality , Length of Stay/statistics & numerical data , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Aged , Alanine/administration & dosage , Alanine/adverse effects , Antiviral Agents/adverse effects , COVID-19/epidemiology , COVID-19/mortality , Canada/epidemiology , Comorbidity , Female , Humans , Male , Middle Aged , Pandemics , Respiration, Artificial/statistics & numerical data , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL